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Abstract. We study the fluctuations of the two-point correlation function in one-dimensional 
disordered spin models. These survive even in the thermodynamic limit and,  in order  to 
reconstruct their probability distribution from the moments,  we study a set of generalised 
correlation lengths i,,. These moments may also be calculated within the transfer matrix 
formalism and  provide insight on disorder-induced fluctuations. 

We show that the i,, can be computed in Monte Carlo simulations. We discuss the 
crossover of the correlation decay rate a t  large distances to  dominance by the most probable 
value given by in, a n d  the relation with the finite-volume fluctuations of the free energy. 

Finally we sketch how to  extend ou r  arguments to dimensions two and  three. 

1. Introduction 

It is well known that in disordered systems such as spin glasses, one can have strong 
fluctuations from sample to sample so that average values can be very different from 
the most probable ones. This is the case for the partition function Z, of an N-spin 
system. In the thermodynamic limit N + 30 the Z probability distribution becomes 
sharply peaked around exp(ln Zh ) and this typically differs from the average partition 
function z. For this reason in disordered systems, one has to average the free energy 
(quenched average) instead of the partition function (annealed average). Throughout 
this paper, the bar indicates an  average over the disorder realisation and  the angular 
brackets, ( ), indicate a thermal average at fixed realisation of disorder. When N + CO 

almost all samples have the same free energy F = - p  In 2. In the context of the 
transfer matrix formalism this is a rigorous result known as Oseledec’s theorem [l]. 
On the other hand, the finite-volume fluctuations of the free energy can be characterised 
by the moments of the partition function F, as widely discussed in the literature [2-4]q. 

The description of fluctuations is most important for the two-point connected 
correlation function G , ( r )  = ( g , ~ ~ , + ~ ) - ( g , ) ( v , + ~ )  between a spin U, and another spin at  
distance r from the site i. Although G,( r )  as well as all its moments are self-averaging, 

- 

A general discussion is presented i n  section 4.4 of [3]. The I D  lsing chain with random couplings and  
zero external field is discussed in [4]. 
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i.e. 1imw+= N- '  X, G,(r)4 = G ( r I 4 ,  a moment of reflection shows that, in general situ- 
ations, the probability distribution of correlation functions is non-trivial even in the 
thermodynamic limit. Indeed, even if it becomes sharply peaked for large r, G , ( r )  
fluctuates wildly among samples or in a given sample among different sites i, also in 
the limit N + w .  The purpose of this paper is to characterise these fluctuations, and  
provide evidence that they are easily observable in an  experimental study. Let us also 
stress that they are of great physical relevance in contrast to the free energy fluctuations 
which are just a finite-volume effect. 

This point was originally raised for the spin-spin correlation function of one- 
dimensional disordered magnets by Derrida and Hilorst [ 5 ] .  In the following we shall 
generalise their results, using techniques developed in the context of dynamical systems. 

To set the stage, let us briefly discuss a simple example which exhibits the basic 
features of the general case: a random Ising chain at zero external magnetic field, with 
couplings J ,  which are independent random variables chosen from a distribution p ( J , ) .  
The Hamiltonian is 

where N is the number of spins and periodic boundary conditions, uN-, = U , ,  are 
assumed. 

It is trivial to see that, for a fixed realization of J , ,  the two-point correlation function 
is given by 

, + r - l  

(UP,+,) = n tanh(PJ,). ,=, 
From (1.2), since all J ,  are independent, one has 

_ _ _ ~  
(up,,,) = (tanh PJ) ' .  (1.3) 

On the other hand (we assume-for simplicity-that all J ,  are positive) in the limit of 
large r we can use the central limit theorem. Equation (1.2) implies that, for r >> 1, 
the probability distribution of (up,-,) is close to a log-normal peaked around the most 
probable value 

Note that when r is large ( U , U , ~ ~ ) ~ ~ < <  ( U , U , + ~ ) ,  since the leading contribution to (u,u,+~) 
comes from very rare (and  correlated) events. As we have discussed, large sample-to- 
sample fluctuations survive in the thermodynamic limit (at least for finite r )  and the 
entire probability distribution of the two-point correlation function has to be studied. 
Let us therefore introduce the moments of these fluctuations, the generalised correlation 
functions [ 5 1  

q r )  = ~ , m , + ~ ) 1 4 ) ~ ' q .  (1.5) 
We expect that in absence of phase transition phenomena, these decay exponentially 
with characteristic correlation lengths &,, i.e. 

c4( r ) -exP(- r154)  for large r (1.6) 
where the g4 have a non-trivial q dependence 
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because of the contribution of large fluctuations. Let us stress that although log-normal 
is a good approximation, its tail cannot be trusted, and so its moments can be very 
different from the actual C q ,  when 9 is not small. A natural framework for computing 
the set of correlation length 1; is the transfer matrix formalism. In disordered systems, 
this leads to an (infinite) product of random matrices, the trace of which is the partition 
function. The largest eigenvalue of the product (whose logarithm is the maximum 
Lyapunov exponent) is related to the free energy, while the ratio of the two largest 
eigenvalues is related to the correlation decay. The probability distribution of the 
finite-volume fluctuations of free energy can then be characterised by the so-called 
generalised Lyapunov exponents L ( 9 )  (see [3] and references therein). On the other 
hand, it is possible to relate the I& to the finite- N fluctuations of the difference between 
the first and the second Lyapunov exponents. The situation is therefore more compli- 
cated and only in particular cases one can relate &, and L ( 9 )  in a simple way. 

In section 2 we study the fluctuations of free energy and correlation functions 
within the transfer matrix formalism and discuss their relation with the fluctuations 
of effective Lyapunov exponents. In section 3 we compare the results of extensive 
Monte Carlo simulations with the theoretical predictions of section 2. In section 4, 
we present the conclusion and discuss the possibility of extending our arguments to 
higher dimensionality. 

2. Generalised scaling exponents and correlation functions 

In this section we first briefly recall the definition of the generalised Lyapunov exponents 
[6] for products of random matrices and their relation to the fluctuations of the free 
energy in random magnetic systems [3,4]. We then extend the formalism to include 
the correlation functions and their fluctuations. 

Let us consider a random Ising chain with Hamiltonian: 
rc 

H = - c (J,u,a,+, + h P , )  U, = *l. 
, = I  

We use periodic boundary conditions U ,  ?, = U , ,  and the couplings J, and/or external 
magnetic field h, are independent random variables. This model can be studied in 
terms of the product of the random transfer matrices 

exp[P(J, + h,)1 
exp[-P(JI + h)1 L , = (  

The free energy per spin Jv is given 

Z, = T r  n L, . ) 

(2.2) 

(2.3a) 

(2.36) 

Oseledec’s theorem [ i ]  ensures that, for almost all realisations of L,, the limit N-oo 
of f w  exists, is unique and is given by 
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where A , is the maximal Lyapunov exponent of the product A,,, = n:”= , L,. The exponent 
A ,  can be related to the rate of increase of a generic vector g(0) E R’ 

1 

,\-I N 
A ,  = lim -In R”’( N )  ( 2 . 5 a )  

where 

In general, for a d x d matrix A h ,  we can consider the set of all d eigenvalues 
vL( N )  with k = 1, 2 , .  . . , d,  of the matrix ANAN. The characteristic Lyapunov 
exponents A ,  are then defined as 

1 
A h  = lim -In T h (  N ) .  

h - x  2N 

The characteristic Lyapunov exponents A k  are non-random quantities, in the sense 
that, fcr almost all realisations of L,,  they d o  not depend on the particular realisation. 
There are, nevertheless, finite- N fluctuations around their asymptotic values A k .  In 
particular, the probability P N ( y I )  d y ,  that, for a system of size N, the (effective) 
maximum Lyapunov exponent assumes a value between y1 and y , + d y ,  can be 
reconstructed through the generalised Lyapunov exponents L( 4): 

1 
~ - r  N 

L ( q )  = lim - In[R”’(N) lq .  (2.7) 

In fact, assuming that for y ,  f A ,  P,\ y , )  decays as exp[ - NS( y,)], where S( y,) > 0 is 
called the Lyapunov spectrum, its relation with L ( q )  is given by the Legendre transfor- 
mation [ 7 ]  

Note that 

( 2 . 8 a )  

(2.8b) 

From the Jensen inequality one can show that L ( q ) / q  is a non-decreasing function of 
q. A linear behaviour, L ( q )  = q A , ,  indicates negligible fluctuations 0(1/ N ) ,  instead 
of the standard O( N-”?) scaling expected by central limit theorem arguments [ 2 ] .  

Except for very particular disorder distributions, an  analytic calculation of the 
maximum Lyapunov exponent, and thus of L ( q ) ,  is not at all straightforward. The 
interested reader is referred to [8] for perturbative calculations and  to [9]  for ‘micro- 
canonical’ estimates. 

This approach to free energy fluctuations can be extended to correlation functions. 
At fixed realisation of disorder the two-point correlation function can be written as 

where 
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and 

11) = (A) 1-1) = ( ;) . 

Denoting by exp[nyh( n)] ( k  = 1 ,2 )  the eigenvalues of the matrix A,, we can write 
A, = C;IA,C,, where 

O ) *  - ( exP[n;l(n)l 
exP[nY*( n ) l  A,, = 

The exponents yk can be ordered so that 1 y l (  n)i > Jy2(  n)l for all n. By definition, yk( n )  
is the kth effective Lyapunov exponent of the product of n matrices L,, and A h =  
l imn+= Re yk. In the following, for the sake of simplicity, we limit ourselves to the 
case of real yh. 

By using the sum rule ZT I U ) ( U ~ =  1 ,  (2.9) becomes 

(2.10) 

with 

c c? - ' = ( Sk I c N - r I ul)Ul (U1 I c ' I SI, ) ( S k  1 c r I U 1  + i-) U1 + r ( ( + I  + r I c NI- r / SA ) (2.1 1 
Cl ('1 + r 

MjC.: - r )  = ( S k  IC \ -$;I 1 S,) (Sk  JC,C,'-,/ S k  ) (2.12) 

where IS,) = 11) and IS2) = 1 - 1). 
As y , (n )  > yz(n )  for all n (Perron-Frobenius theorem), one can easily compute 

(u ,u~+~) ,  for large r, by taking into account just the first two terms in the numerator of 
(2.10), i.e. (k ,  k ' )  = (1, 1) and (2, l ) ,  and the leading term in the denominator, i.e. 
( k ,  k ' )  = ( 1 ,  1 ) .  It follows that 

G, ( r )  = (gVgt+,) - ( q l ) ( ~ , + r )  - expi- [ Y I  ( I )  - ~ z ( r ) I r ) .  (2.13) 

As for the maximal Lyapunov exponent, the probability distribution of the fluctuations 
may be reconstructed by introducing another infinite set of correlation lengths lq by 

C,(r) = (lG,(r)14)1 ' -exp(-r/ l ,)  large r. (2.14) 

By analogy with the L ( q ) ,  the lq are related to the sample-to-sample fluctuations of 

exP{-qrrYl(r) - y,(r)lI -exp(-qr / lq)  large r. (2.15) 

The probability distribution of the fluctuations of y l (  r )  - yz( r )  can be obtained from 
lq through a Legendre transformation similar to ( 2 . 8 ~ ) .  Moreover, one immediately 
sees that the most probable correlation decay is selected by the limit q + O ,  i.e. by the 
'quenched' average of the logarithm [cf (2.8b)l 

y , ( r )  - YAr) by 

An experimentalist usually measures C l ( r ) ,  i.e. the spatial average of Gi(r) ,  and so 
finds ll. Note that from the convexity of q / l q ,  one has lo" 11, i.e. the typical correlation 
decay is faster than that estimated by the average correlation. 
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The physically relevant question, however, is what happens to the correlation 
function C ,  at 'intermediate' values of r, where we expect to observe a crossover 
between the average behaviour and  the most probable behaviour which must be 
recovered at  very large values of r. We shall discuss this point in the framework of 
the numerical experiments described in the next section. Another important remark 
is that the fluctuations of the difference between effective Lyapunov exponents are not 
simply related to the fluctuations of the effective maximum Lyapunov exponent, and  
so the 5, to the L ( q ) .  

Let us, however, describe an  exception to the general situation, i.e. the one- 
dimensional random field Ising model (the J ,  are fixed, the h, random): a simple 
calculation shows that the determinant of L, is constant, so that for all r the sum of 
the effective Lyapunov exponents y , ( r ) +  y 2 ( r )  is equal to 

(2.16) A ,  + A 2  = lnldet L,l = A. 

This relation can be used to eliminate y z ( r )  in (2.13), yielding 

G, ( r ) -exp{r[A-2yI( r ) l}  (2.17) 

(2.18) 

so that 

& I =  -A - L( -2q)/q. (2.19) 

Nevertheless, even if in the general case the 5, are not simply related to the L ( q ) ,  
one can calculate them directly. The procedure goes as follows. Use the relations 

and 

where g( i + 1) = L,g( i), so that: 

Averaging over the L,, one obtains 

(2.20) 

(2.21) 

(2.22) 

(2.23) 

In this way we have numerically studied several cases with both random couplings 
and/or  random magiietic fields. For fixed couplings and  random fields two distributions 
were considered: 

(i) Gaussian of zero mean and variance m2;  
( i i )  uniform on an  interval [-h,, h,]. 
To get an  idea of the role played by the fluctuations of the free energy against that 

of the spin-spin correlation function, for J /  kT = 2 and  h,/ kT = 0.5 we find A ,  = 2.048 
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and  L( -2)/(  -2) = 2.037 while the correlation decay is given by (0' = A I - A 2  = 0.094 
and  l ; '=O.O75.  This provides clear evidence that a small deviation of L ( q ) / q  from 
A ,  (i.e. small free energy fluctuations) can induce a substantial difference between the 
most probable correlation length lo and the average one l l .  

We have also considered the case of random couplings and random fields. Here 
there is no clear-cut relation, like (2.19), between the 5, and the L ( q ) ;  a numerical 
computation remains, nevertheless, equally straightforward. We have considered in 
particular the case of couplings uniform on the interval [JI, J 2 ]  in the presence of 
Gaussian fields of zero mean and  variance u. 

Let us mention that it is possible to extend our argument to higher dimensions, by 
considering ZD strips and  3D bars, as we shall briefly sketch in section 4. 

3. Numerical simulations 

In this section we shall confront the results obtained via the transfer matrix formalism 
with direct Monte Carlo simulations of the  model (2.1). In our Monte Carlo calculations 
the generalised correlation functions (2.14) are defined as 

where the thermal average inside G , ( r )  = (u,u,+r)-(u,)(u,+r) is given by the average 
over the Monte Carlo configurations and  the disorder average by a spatial average. 
We have used periodic boundary conditions =U, .  The typical value of N, the 
number of spins in the chain, used in the simulations is 12 000, whereas the number 
of Monte Carlo configurations is 20 000. 

The characteristic lengths are obtained directly from their definition 

C,(r )  -exp(-r/5,). (3.2) 
As a n  example, in figure 1 is shown In C, ( r )  plotted as a function of r with q = 1 (fu!l 
circle), 3 (full box) for pJI uniform on the interval [0.2, 1.21 and  ph ,  Gaussian of zero 
mean and  variance u = 0 . 1 .  The broken straight lines represent the C, ( r )  obtained 
with l, derived from the fluctuations of the Lyapunov exponents of the product of 
random transfer matrices. The full line has slope -60'. The agreement is excellent, 
as one can see from the figure. 

Another example is shown in figure 2, where In C, ( r )  is plotted as a function of r 
for q = 1 (full circle), q = 3 (full box) taking p J ,  = 2 and random p h ,  uniformly 
distributed in the interval [-0.5,0.5]. The agreement between the Monte Carlo simula- 
tions and the transfer matrices approach is, also in this case, excellent. 

We have finally studied the behaviour of the most probable value as a function of 
r. This is done by computing the probability distribution of G , ( r )  for different values 
of r ;  an  example is shown in figure 3. As expected, for increasing r, it becomes more 
and more peaked about a value that tends to zero. This value is identified as the most 
probable value of G , ( r ) .  If one plots the logarithm of the most probable value as a 
function of r one finds that this scales like ( A 2 - A , ) r .  See figure 1, where the crosses 
denotes the logarithm of the most probable value. The full line has slope A ? - / \ ,  . 
Notice that the characteristic length of the most probable value is found to be different 
from that of the average correlation function C , ( r )  (cf figures 1 and 2). 

The non-trivial behaviour of 5, as function of q indicates that the leading contribu- 
tion to the correlation functions C, ( r )  must come from very rare events, i.e. large 
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r 

Figure 1. The C , , ( r )  as a function of r for p J ,  uniform on the interval [0.2, 1.21 and ph ,  
Gaussian of zero mean and variance c r = O . l .  The symbols refer to 4 = 1 (full  disc) and 
q = 3 (full square). The broken straight lines are the C,,( r )  predicted by the fluctuations 
of the Lyapunov exponents. The numerical errors are comparable with the symbol size. 
The '+' refer to the most probable value obtained from histograms of G , ( r ) ,  The full  line 
has slope --[;I 

0 

-1 
h 

3, 
U" 

U" 
5 

\ 
h z -2 

-3 
I I 1 L 

0 10 20 30 
r 

Figure 2. The C<!( r )  as a function of r for p J ,  = 2 and p h ,  uniform on the interval [-0.5,0.5]. 
The symbols refer to 4 = 1 (full disc) and 4 = 3 (full square). The broken straight lines are 
the C<,(r )  predicted by the fluctuations of the Lyapunok exponents. The numerical errors 
are comparable with the symbol size. The full line has slope -[;I and gives the decay of 
the most probable value. 

fluctuations. Therefore we could not limit ourselves to look only at  11, since the whole 
hierarchy of exponents lq arises as the natural experimental characterisation of correla- 
tion functions. 

From a practical point of view, it is very important to discuss the effect of a finite 
number of spins N in numerical experiments. A quantitative characterisation of the 
finite-size fluctuations can be achieved by looking at the variance 

(3.3) 
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Figure 3. The probability distribution P of G,(ri  plotted against G , ( r )  ( r  = 2 ,  3, 4, 5) for 
the case of figure 1.  The arrows indicate the mean value of G ( r ) .  

of the cumulant two-point function 

This means that in a numerical study the fluctuations of g ( r )  can be observed for 
r s  c In N, with c - ' = 2 ( 5 ; ' - 5 ; ' ) .  As In N is quite a small number even in large 
systems (for us In N =  lo ) ,  in the literature it has been argued that it is practically 
impossible to measure 11,  almost all data being concentrated around the most probable 
value [ 5 ] .  This is not correct since the constant c need not be (and  is not) small, so 
that c In N may be sizeable. For r 2 c In N, one should expect to observe for almost 
all realisations the most probable correlation decay (given by lo) because of the 
Oseledec theorem. This is, however, a quite academic statement: in this range of r the 
values of g ( r )  are so small that they cannot be measured, due of the errors of the 
statistics in a Monte Carlo calculation. Equally severe, perhaps worse, limitations, 
due to finite precision of instruments, also occur in real experiments. This answers, 
in a positive sense, the point raised in reference [ 5 ]  as to the feasibility of detecting 
the average value of the spin-spin correlation function (and  of the generalised correla- 
tion functions) in a Monte Carlo simulation. 

4. Conclusions 

In order to describe the sample-to-sample fluctuations of two-point correlation func- 
tions in random systems, we study a set of generalised exponents 14. The &, are related 
to the finite-N fluctuations in the ratio of the largest eigenvalues of the product of N 
random transfer matrices. They generalise the difference of the first two Lyapunov 
exponents. For the specific problem of spin-spin correlations in one-dimensional 
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nearest-neighbour random magnets, we found excellent agreement with direct Monte 
Carlo simulations. 

We also discussed the crossover between the average value of the correlation decay 
and  its most probable value, as well as the effect of finite size and of finite statistics 
in Monte Carlo calculations. 

We will conclude with some comments on calculations in higher dimensions: in 
the context of the transfer matrix formalism we must consider strips of size 1 and so 
2’ x 2‘ matrices for two dimensions (or bars of size 1’ and 2‘> x 2’’ matrices, for three 
dimensions). The typical correlation decay is thus given by the sum of exponentials 
related to the differences of the kth Lyapunov exponent ( k  = 2,3,  . . . , 2 ’ )  from the first 
Lyapunov exponent [lo]. However, for distances large enough, y 2  - y ,  gives the leading 
contribution-the corrections are exponentially small if there are no degeneracy prob- 
lems, i.e. phase-transition-like phenomena. One could therefore repeat the arguments 
of our paper, taking into account this warning. Nevertheless, equation (2.22) cannot 
be used since the determinant of the transfer matrix is now related to the sum of all 
the 2‘ Lyapunov exponents. We must therefore introduce the effective rate of surface 
increase under N iterations of the transfer matrices L, 

(4.1) 

where x indicates the external product, gl(0) and  t2(0)  are generic non-parallel vectors. 
Indeed, the standard procedure for numerical computations of the first two Lyapunov 
exponents consists in looking at the typical increase rate of R‘” [ 111, while the increase 
rate of its order-q moments leads one to define a set of generalised exponents L”’(q) 
[12]. We must recall these somewhat technical definitions since they allow us to 
compute the generalised correlation lengths in any disordered model which can be 
studied by transfer matrices by using 

(4.2) 

This extension of equation (2.22) paves the way to a full characterisation of correlation 
functions for nearest-neighbour disordered models in higher dimensions. Indeed it is 
known [13] that for product of very large random matrices the fluctuations of the 
effective Lyapunov exponent are not negligible. We, therefore, expect a non-trivial 
behaviour of lq as function of q. 

Acknowledgments 

We thank M Stone for a critical reading of the manuscript. One of us (SN)  is supported 
by EEC Action de Stimulation. 

References 

[ l ]  Oseledec V I 1968 Trans. Mosc. Math. Soc. 19 197 
[2] Toulouse G and Derrida B 1981 Proceedings of 6lh Brasilian Symposium of nteoretical Physics 

[3] Paladin G and Vulpiani A 1987 f h y s .  Rep. 156 147 
ed E Ferreira and B Koller (Brasilia: CNPQ) p 143 



Fluctuations of correlation functions 3093 

[4] Jug G 1987 J.  Phys. A: Math.  Gen. 20 L319 

[5] Derrida B and Hilhorst H J 1981 J .  Phys. C: Solid Stare Phys. 14 L544 

[6] Fujisaka H 1983 h o g .  7heor. Phys. 70 1264 

[7] Eckmann J-P and Procaccia I 1986 Phys. Rec. A 34 659 

[8] Derrida B, Vannimenus J and Pomeau Y 1978 J .  Physique C 11 4749 

Tanaka T, Fujisaka H and lnoue M 1989 Pliyc.. Rec. A 39 3170 

Derrida B 1984 Phgs. Rep. 103 29 

Benzi R, Paladin G, Parisi G and Vulpiani A 1985 J .  Phys. A: Math. Gen. 18 2157 

Paladin G, Peliti L and Vulpiani A 1986 J.  Phys. A: Math. Gen. 19 L991 

Derrida B and Gardner E 1984 J .  Physique 45 1283 
Bouchaud J P, Georges A, Hansel D, Le Doussal P and Maillard J M 1986 J.  Phys. A: Math. Gen. 19 

LI  145 
[9] Deutsch J and Paladin G 1989 Phgs. Rec. Lerr. 62 695 

Nicolis S ,  Paladin G and Vulpiani A 1989 J.  Phys. A: Math. Gen. 22 L1121 
[IO] Isola S 1988 Commun. Math. Phys. 116 343 
[ I l l  Benettin G, Galgani L and Strelcyn J M 1976 Phgs. Rec. A 14 2338 

[12] Paladin G and Vulpiani A 1986 J .  Phys. A: Marh. Gen. 19 L997 
[13] Crisanti A, Paladin G and Vulpiani A 1988 J. Stat. Phys. 53 583 

Benettin G, Galgani L, Giorgilli A and Strelcyn J M 1980 Meccanica I5 9, 21 


